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State-space prediction model for chaotic time series
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~Received 14 July 1997; revised manuscript received 1 April 1998!

A simple method for predicting the continuation of scalar chaotic time series ahead in time is proposed. The
false nearest neighbors technique in connection with the time-delayed embedding is employed so as to recon-
struct the state space. A local forecasting model based upon the time evolution of the topological neighboring
in the reconstructed phase space is suggested. A moving root-mean-square error is utilized in order to monitor
the error along the prediction horizon. The model is tested for the convection amplitude of the Lorenz model.
The results indicate that for approximately 100 cycles of the training data, the prediction follows the actual
continuation very closely about six cycles. The proposed model, like other state-space forecasting models,
captures the long-term behavior of the system due to the use of spatial neighbors in the state space.
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Measured time series are usually the basis for charac
izing a dynamical system. In practical cases, however, i
not possible to observe all relevant dynamical variables p
taining to the system. The most common case is limited
scalar time evolution of a variable for a finite duration
time. One of the most challenging endeavors is to predict
continuation of the time evolution of the scalar variab
monitored. A finite-dimensional linear system produces
signal that can be characterized by a finite number of
quencies. Based upon this fact, either in frequency or in t
domain there are methods for time series prediction@1#. For
nonlinear processes, however, these methods become
propriate since a global model cannot be applied to the en
state space where the signal lives@2,3#.

Eckmann and Ruelle@4# suggested first the idea of findin
the relation between the delay coordinates@5–7# of a point
and the points that appear at some time later in the s
space. This idea was followed immediately@8–11# and also
found an application in the solution of a so-called inve
problem in iterated function systems@12#. A competition was
also arranged to test the success of prediction algorit
proposed until 1993@13#. Among those registered for th
competition, two methods prove to be the most succes
@14,15#. One uses a connectionist neural network@14# and
the other utilizes the delay coordinate embedding ba
methodology@15# based upon the Eckmann-Ruelle propo
tion. More recently, wavelets@16# and genetic algorithms
@17# have also been suggested for nonlinear predictio
And, a methodology based upon a nonlinear prediction te
nique @18# has been proposed to probe dynamical coupl
@19# among nonlinear systems. In what follows we propos
state-space prediction model whose success will be show
be comparable with those of Sauer’s@15# and Wan’s@14#,
although present methodology is simpler and easier to im
ment.

The prediction problem may be formulated as follow
Suppose that the time evolution of the system behavio

*Author to whom correspondence should be addressed.
PRE 581063-651X/98/58~2!/2640~4!/$15.00
r-
is
r-
a

e

a
-
e

ap-
re

te

e

s

ul

d
-

s.
h-
g
a
to

e-

:
is

reconstructed in the state space@7,20,21#. A total of n dif-
ferent points on the attractor located in the state space
known. These points areP(1),P(2),...,P(n). With respect
to a fixed reference frame, a point is represented bym num-
bers,m being the dimension of the state space. There are
questions:~i! Can one determine the pointP(n11), and~ii !
if ~i! is achieved, how far can the consecutive pointsP(n
11),P(n12),...,P(n1n* ) be found, that is, what is the
maximum value forn* ?

We first postulate that for any pointP(n), the succeeding
point P(n11) can be found using the preceding points
P(n11) and the time evolution information of the spati
neighbors ofP(n) that are located within a certain cuto
distancer ~Fig. 1!. Note thatP(n) is a column vector withm
rows. The preceding points ofP(n11) may be expressed in
a (dm) dimensional vectorP2(n11) as

P2~n11!5@PT~n!PT~n21!PT~n22!¯PT~n2d11!#,
~1!

whered is referred to as the model dimension. According
our conjecture, the following equation may be written:

P~n11!5CP2~n11!, ~2!

whereC is an@m3(dm)# coefficient matrix that contains a
average time evolution information of the spatial neighb
of P(n). In Fig. 1, P(ki) denotes these spatial neighbor
Here i can take values from 1 top, which is the number of
neighbors that fall into the sphere whose center is atP(n)
and radius is the cutoff distancer . The entries of the coeffi-
cient matrix C, therefore, depend on the location ofP(n)
and its topological neighborhood. TheC matrix can be ob-
tained from the following equation:

C5BA21, ~3!

whereA is a@(dm)3p# matrix whosei th column consists of
P2(ki11) andB is an (m3p) vector whosei th column is
made of P(ki11). The generalized inverse ofA can be
found using the singular value decomposition technique@22#.
2640 © 1998 The American Physical Society
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The same scheme may be followed to calculateP(n12),
which follows the last point, which is nowP(n11).

We need to define an error between the predicted and
actual trajectory of the system so as to monitor the accur
of the prediction model within the range of locality assum
tion. Root-mean-square~rms! error, which calculates the roo
mean square of the differences between the predicted an
actual data at all points, gives a single number about
error. Instead, we need the evolution of the error along
prediction horizon@15#. Therefore, plotting the rms errors o
neighboring predictions within a window length ofl w of
each point would be more meaningful. This is referred to
the moving rms error. The error of this nature may be
pressed as

e~ i !5S (
k5 i 2 l w/211

k5 i 1 l W/2

@x~k!2 x̄~k!#2

l w

D 1/2

, ~4!

where i 5 l w/2,...,n* 2 l w/2. Here n* is the total number
points predicted, andx(k) and x̄(k) are the actual and pre
dicted data, respectively. We now would like to test the p
posed methodology for a benchmark case.

Complex signals were commonly assumed to be the
put of a complicated system with a large number of act
degrees of freedom. However, realization of nonlinear s
tems with a relatively small number of degrees of freedo
while deterministic in principle, can create output sign
that look complex and mimic stochastic signals, such as
Lorenz model@23,24#. This model describes the Rayleigh
Bénard convection arising from the two-dimensional Navi
Stokes equation, which is formulated for a fluid slab of fin
thickness subjected to gravity loading, heated from bel

FIG. 1. A schematic view illustrating the collection of spati
neighbors and their time evolution in the state space. Herer denotes
the radius of the cutoff sphere,d the number of consecutive point
preceding in the time history of a trajectory.P(n) represents the
last point in the training data andP(ki) ~any of the filled circles! is
a spatial neighbor within the cutoff sphere of the last point.
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and between the top cold and the bottom hot surface
temperature is held constant. The partial differential eq
tions were transformed to a set of three ordinary differen
equations@23#. Later Lorenz described the way he derive
the model both physically and mathematically@24#. The
three ordinary differential equations are

ẋ52sx1sy,

ẏ52xz1rx2y, ~5!

ż5xy2bz,

wherex is the amplitude of the convection motion,y is the
temperature difference between the ascending and desc
ing currents,z is the distortion of the vertical temperatur
profile from linearity, ands, r , and b are dimensionless
parameters. The Lorenz system has been studied extens
and Eqs.~5! was recently shown to be isomorphic to a Do
pler broadened optically pumped laser model@25#. The pa-
rameters in Eqs.~5! are most commonly selected to b
s510, r 528, andb58/3 for a rich dynamical behavior@26#.

For generating the data, the Lorenz equations displaye
Eqs.~5! are integrated for 33104 time steps with a step siz
of 531023. The Bulirsch-Stoer method@27# is used to ob-
tain the time evolution of the parametersx, y, andz whose
starting values arex(0)5y(0)5z(0)510. The time-delayed
embedding together with the false nearest neighbor te
nique @21# is utilized to reconstruct the state space withm
53 using the convection amplitudex. The objective is to
capture the actual time continuation of the amplitudex.

Five different time series with different end point indice
16 000, 18 000, 20 000, 22 000, and 24 000 are prepare
training data for prediction. Continuation of the amplitud
data is predicted for 103 time steps for each initial condition
Results are then compared with the actual continuat
which is calculated by integrating the Lorenz equations f
ther in time with the Bulirsch-Stoer method. The parame
set of the algorithm is identical for all five runs. The mod
dimensiond, which represents the number of consecut
points in a trajectory whose linear combinations determ
the succeeding point, is set to 3. The radius of the spherr ,
which controls the number of spatial neighbors collec
from the adjacent trajectories is set to 0.2. Comparison s
ies are placed in Fig. 2. The moving rms error obtained
averaging over five sets is displayed in Fig. 3.

The results indicate that predictions with different starti
points contribute to the accumulation of error different
However, the averaged error demonstrates that the e
starts growing considerably after around 600 time steps, t
fluctuates within an interval about 200 steps. The later st
however, diverge significantly from the actual continuatio
It is observed that the predictions follow the actual trajecto
for a certain period of time. The predicted results then s
diverging from the actual one. This is observed whenever
trajectory approaches zero where the number of spa
neighbors increases enormously. Therein the sensitivity
the initial conditions is so critical that the error accumulat
by the prediction algorithm also grows exponentially. T
predicted trajectory gets away slightly from the true contin
ation first, and as it comes near zero once more, this sl
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difference results in a shift to a completely different regi
of the attractor. However, the predicted trajectory catches
actual continuation with a time lag, as the method utilizes
state space neighbors for predictions. This fact is an adv
tage of the state-space prediction methods over neural
works @13# and would serve a good starting point to creat

FIG. 2. Predicted~dashed lines! and the actual continuation
~solid lines! of the time evolution for thex coordinate of the Lorenz
model for five different initial conditions. These figures illustra
the dependence of prediction performance on the starting poin
s
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model for long-term predictions.
One can enlarge the cutoff radiusr of the sphere in order

to include the far neighbors. This may invalidate the loc
linear model assumption. Using a sphere with smaller rad
on the other hand, may increase the effect of noise@15#.
Therefore, one needs to find an optimum radius in the sp
trum.

The simple prediction algorithm proposed herein us
both spatial and temporal information about the trajector
in the state space. The relative weight of these two com
nents depends on the parameters selected. The model di
sion d and the cutoff radiusr are the free parameters th
determine the weight. For example, decreasing the mo
dimension and increasing the cutoff radius, one can form
late an algorithm in which spatial information is more dom
nant.

An additional measure to scale the relative contributio
of the neighbors with respect to their locations in the cut
sphere may be considered@15#. In the algorithm proposed
here, we do not limit the number of spatial neighbors com
from a trajectory. Thus, the nearest trajectories can cont
ute to the neighboring set with more than one point. T
results in an increased weighting of the contribution com
from the nearest trajectories.

The authors gratefully acknowledge partial support fro
Bogazici University Research Funds, Project No. 97A04
and from The Boeing Company, Project No. PO FR-5135
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.

FIG. 3. The moving rms error of the prediction for thex coor-
dinate of the Lorenz model. The error is obtained by averaging o
five different predictions exhibited in Fig. 2.
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